Surname

Centre Number Candidate Number

Other Names

GCE AS/A level

1092/01

CHEMISTRY CH2

P.M. THURSDAY, 19 January 2012

11/2 hours

FOR EXAMINER'S USE ONLY						
Section	Question	Mark				
А	1-5					
В	6					
	7					
	8					
	9					
	10					
TOTAL						

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a: • calculator;

• Data Sheet containing a Periodic Table supplied by WJEC. Refer to it for any relative atomic masses you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

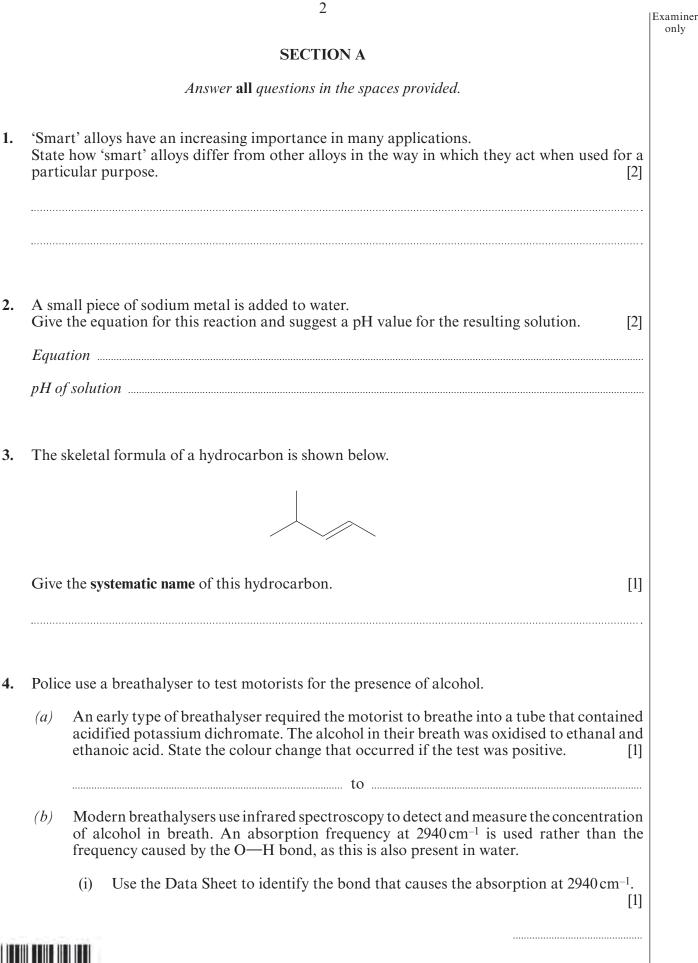
Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer all questions in the spaces provided.

Candidates are advised to allocate their time appropriately between Section A (10 marks) and Section B (70 marks).

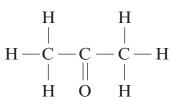
INFORMATION FOR CANDIDATES


The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

You are reminded that marking will take into account the Quality of Written Communication used in all written answers.



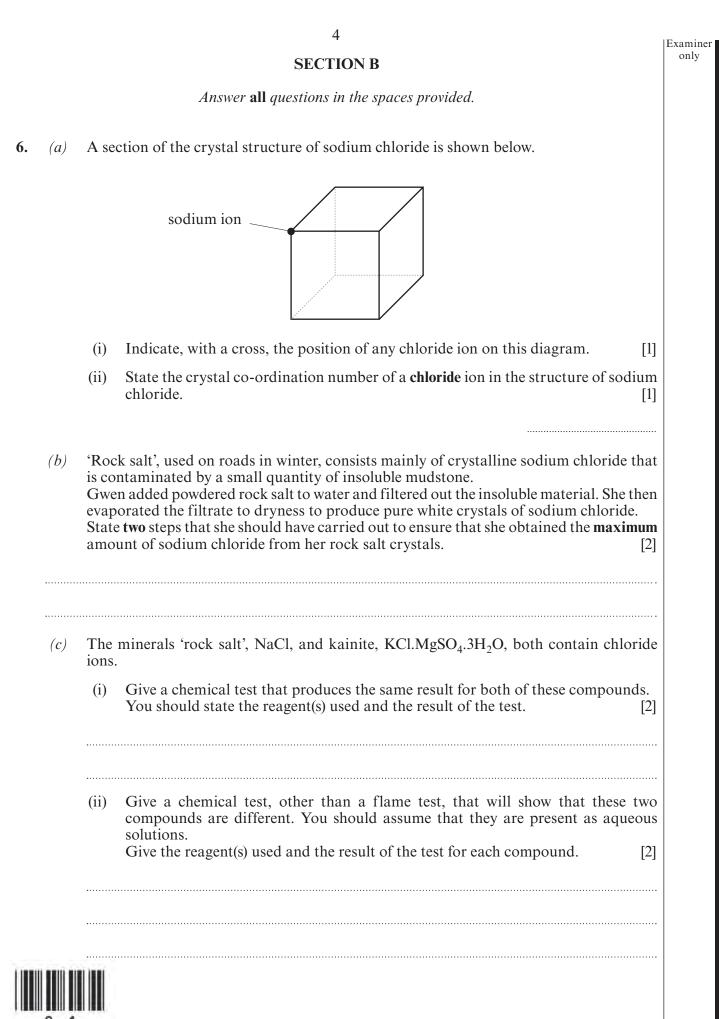
1092

Examiner only

- (ii) State which **one** of the following correctly describes any change in the absorption at 2940 cm^{-1} if the concentration of alcohol in the breath increases. [1]
 - A the frequency decreases to 2900 cm⁻¹
 - **B** the frequency increases to $3000 \,\mathrm{cm}^{-1}$
 - C the intensity of the absorption at $2940 \,\mathrm{cm}^{-1}$ increases
 - **D** the absorption covers the range 2900 to $3000 \, \text{cm}^{-1}$
- (iii) A false breathalyser reading can be given by a person who exhales propanone, as a result of an illness.

propanone

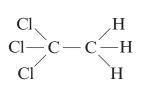
Identify the bond that would distinguish the infrared spectrum of propanone from that of an alcohol. Using the Data Sheet, state the absorption frequency of this bond. [1]

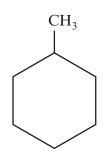

5. 'Superglue' is a liquid containing methyl 2-cyanopropenoate. In the presence of moisture this alkene rapidly polymerises, in a similar way to ethene. Complete the table showing the structure of the repeating unit. [1]

Monomer	Repeating unit
H $C = C$ CN $COOCH_3$	

(1092-01)

092


Examiner only


[1]

- (d) A common reaction of the halogens is the formation of the anion, X^- .
 - (i) State, in terms of electronic structure, why this occurs.
 - (ii) Give a reason why the tendency to form the X⁻ ion decreases down the halogen group.

(e) One compound previously used in correction fluid was 1,1,1-trichloroethane, but this has been replaced by compounds such as methylcyclohexane, which has a much less adverse effect on the environment.

1,1,1-trichloroethane

methylcyclohexane

(i) Explain, in terms of bond strengths, why 1,1,1-trichloroethane has an effect on the ozone layer but methylcyclohexane does not. [2]

(ii) Hept-1-ene is an isomer of methylcyclohexane.

$$CH_3$$
- CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2

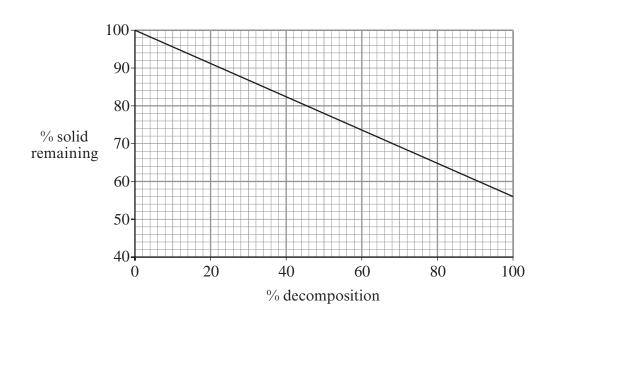
Describe a chemical test that gives a positive result for hept-1-ene but not for methylcyclohexane. [2]

Reagent(s)

Observation

Total [14]

Examiner only


7. (a) In industry calcium oxide is made by heating limestone (a form of calcium carbonate) to a high temperature.

 $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$

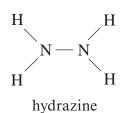
(i) This experiment can be repeated in the laboratory by strongly heating a marble chip. Unless the temperature is high enough the reaction is often incomplete. In an experiment the following results were obtained.

Mass of marble chip before heating = 3.24 g Mass of solid after heating = 2.01 g

Use the graph to help you calculate the percentage decomposition of the marble chip into calcium oxide and carbon dioxide. [2]

 $\begin{array}{c}1092\\010007\end{array}$

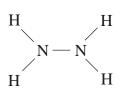
	1	Examiner only					
(ii)	The solid from (i) was carefully added to cold distilled water in order to produce a solution of calcium hydroxide, together with unreacted solid calcium carbonate. The solubility of calcium hydroxide in water was found from the resulting solution. The instructions that were being followed stated • add the solid to about 1200 cm ³ of distilled water • stir the mixture for ten minutes • filter the mixture						
	I. State why the solid was added to distilled water. [1]						
	II. State why the mixture was stirred for ten minutes. [1]						
(iii)	1.00 dm ³ of the solution, produced in (ii), was then titrated with hydrochloric acid of a known concentration. $Ca(OH)_2 + 2HC1 \longrightarrow CaCl_2 + 2H_2O$						
	It was found that 0.0450 mol of hydrochloric acid reacted with all the calcium hydroxide present in the solution.	1000					
	I. State the number of moles of calcium hydroxide that reacted with the hydrochloric acid. [1]						
	II. Calculate the solubility of calcium hydroxide in this solution in gdm ⁻³ . [The molar mass of calcium hydroxide is 74.1 gmol ⁻¹] [1]						
	Solubility = $g dm^{-3}$						
(iv)	Calcium carbonate will also react with hydrochloric acid. State why any unreacted calcium carbonate from the marble chip cannot interfere with the experiment in (iii). [1]						


	8	Examiner only
(b)	Dolomite, MgCO ₃ .CaCO ₃ , is a mineral found in Italy. State the colour given by dolomite in a flame test, giving a reason for your choice. [2]	
(c)	A solution of calcium hydroxide is reacted with aqueous sulfuric acid. A faint white precipitate is seen, as the calcium ions react with the sulfate ions. Give the ionic equation for this reaction. [1]	
(d)	The hard mineral fluorapatite, $CaF_2.3Ca_3(PO_4)_2$, is found in tooth enamel. One weakness with this material is that there are tiny holes between each 'molecule' of fluorapatite and these may be a cause of sensitive teeth. Recently a manufacturer has suggested that nano-sized fluorapatite particles in a toothpaste may help solve this problem by filling the holes. Suggest what should be done before this nano-sized material is licensed for use. [1]	
(e)	Fluorapatite occurs naturally as a rock and can be used to make the fertiliser 'superphosphate'. 5.0 tonnes of fluorapatite give a maximum yield of 8.6 tonnes of superphosphate. Calculate the mass of superphosphate made from 5000 tonnes of fluorapatite if the percentage yield is 93%. [2]	
	Radium and calcium are elements in Group 2. Explain why radium carbonate, $RaCO_3$, has a similar formula to calcium carbonate, $CaCO_3$. [1]	

Total [14]

Examiner only

8. In 1941 the Germans began to develop a rocket-powered aircraft, the Me 163, for use (a)in the Second World War. The fuel used was based on hydrazine, which reacted with hydrogen peroxide, H_2O_2 .

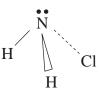

Steam was needed to mix the rocket fuel and the hydrogen peroxide. This was (i) produced by mixing some hydrogen peroxide with the catalyst calcium manganate, $Ca(MnO_4)_2$. [1]

Deduce the oxidation state (number) of manganese in calcium manganate.

(ii) The aqueous hydrogen peroxide used contained 76.5 g of hydrogen peroxide in 100 cm³ of its solution. Calculate the concentration of the hydrogen peroxide in mol dm⁻³. [2]

Hydrazine contains a polar covalent bond between a nitrogen and a hydrogen (iii) atom. State what is meant by a *polar covalent bond* and explain how this arises. [2]

(iv) Hydrazine is a weak base and forms hydrazinium chloride, N₂H₅+Cl⁻, which contains a co-ordinate bond. State what is meant by the term *co-ordinate bond*.


[1]

Examiner only

[1]

(v) Hydrazine is manufactured from the compound monochloramine, NH_2Cl .

A probable shape for a molecule of monochloramine is as shown above. The bond angles H-N-H and H-N-Cl are around 107°.

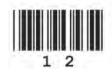
Use the valence shell electron pair repulsion theory (VSEPR) and the information given to explain the shape and bond angles. [2]

(b) (i) The decomposition of hydrogen peroxide may involve hydroxyl radicals.

State why this is described as a radical.

(ii) Another reaction that produces radicals is the reaction of chlorine with methane.

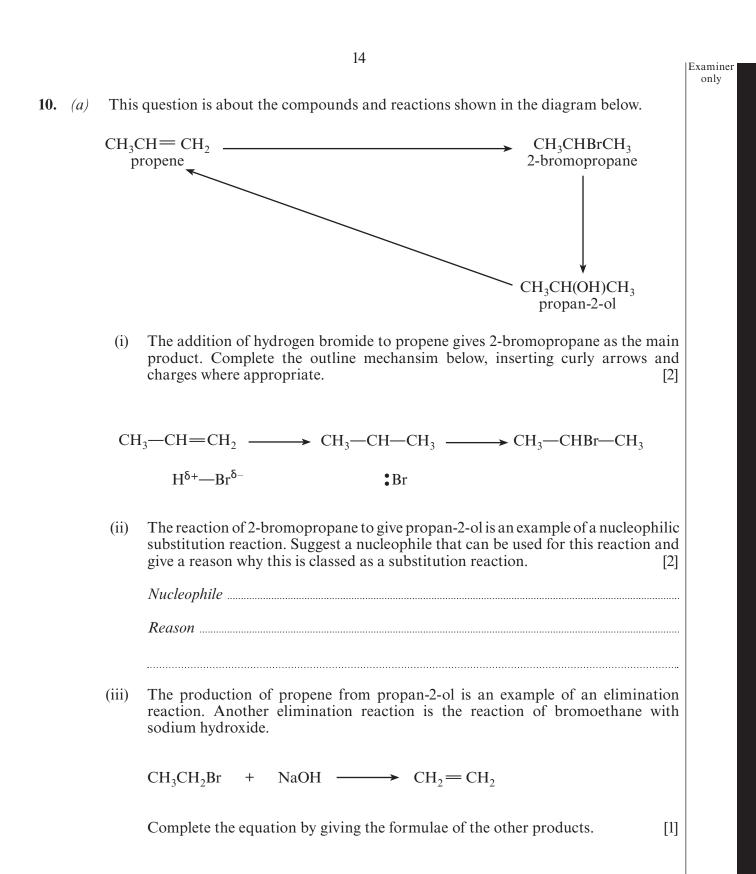
- I. Give the equation for the reaction of a methyl radical and chlorine. [1]
- II. State why the reaction in I above is described as a propagation reaction. [1]


	11	Examiner only
(iii)	Radicals are involved in the cracking of petroleum fractions at 600 °C.	
	One of the products obtained by cracking is an alkane of molar mass 100 g. Deduce the molecular formula of this alkane.	[1]
(iv)	Radicals are produced by the homolytic bond fission of a covalent bond. State what is meant by the term <i>homolytic bond fission</i> .	[1]
	Total [

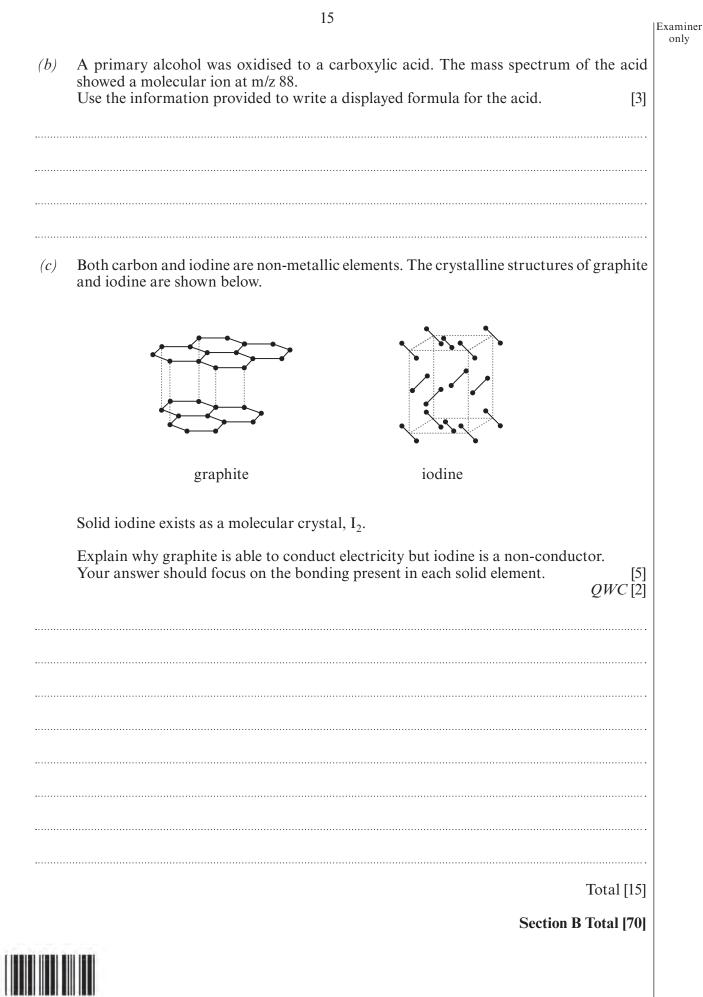
Examiner only

9. During 2010 a serious leak of petroleum (crude oil) occurred in the Gulf of Mexico. This loss of millions of litres of petroleum caused an environmental and ecological disaster.

(a)	but f is be	bleum consists largely of a mixture of alkanes that do not dissolve in sea water form a surface layer. The main reason that these alkanes cannot dissolve in water cause they are unable to hydrogen bond with water. Explain what is meant by <i>ogen bonding</i> and use this to explain why alkanes do not dissolve in water. [4] QWC [1]
(b)	(i)	Some of the leaking oil was collected by tankers and taken to oil refineries. The petroleum was then separated into fractions by the process of fractional distillation. Describe what is meant by <i>fractional distillation</i> . [2]
2F	(ii)	One of the fractions was then further refined into fuel for vehicles. During refining, most of the sulfur compounds present in the fuel are removed in order to reduce the amount of oxides of sulfur released in exhaust gases. One stage in the process is to convert unpleasant-smelling thioalcohols (R—SH) into disulfides (R—S—S—R) using copper chloride, CuCl ₂ . I + 2CuCl ₂ \longrightarrow R—S—S—R + 2CuCl + 2HCl Explain, using the oxidation states (numbers) of copper, why copper chloride, CuCl ₂ , is reduced in this reaction. You should assume that the oxidation state of chlorine is –1. [2]



Examiner only


(c) Compounds A and B are organic compounds of sulfur found naturally in some foods.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

GCE AS/A level

CHEMISTRY – DATA SHEET FOR USE WITH CH2

P.M. THURSDAY, 19 January 2012

Infrared Spectroscopy characteristic absorption values

Bond	Wavenumber / cm ⁻¹
C—Br	500 to 600
C—Cl	650 to 800
С—О	1000 to 1300
C=C	1620 to 1670
C=0	1650 to 1750
C≡N	2100 to 2250
С—Н	2800 to 3100
O—H	2500 to 3550
N—H	3300 to 3500

				<u>+</u>	d	ц	c	g]		
	0	100	Helium 2	20.2 Neon 10	${}^{40.0}_{\mathrm{Ar}}$ Ar Argon ${}^{18}_{18}$	83.8 Kr Krypton 36	131 Xe Xenon 54	(222) Rn Radon 86			
	Г	p Block		19.0 F Fluorine 9	35.5 Cl Chlorine 17	79.9 Br 35	127 I S3	(210) At Astatine 85	,	175 Lu Lutetium 71	(257) Lr Lawrencium 103
	9		p Block	16.0 O 8	32.1 S Sulfur 16	79.0 Se 34	128 Te 52	(210) Po Relonium		${{\rm Yb}\over {\rm Yb}}$	(254) No Nobelium 102
	S			p B	$_{7}^{14.0}$ N	31.0 Phosphorus 15	74.9 As Arsenic 33	122 Sb Antimony 51	209 Bi 83		${}^{169}_{Tm}$
	4				12.0 C 6	28.1 Si Silicon	72.6 Ge Germanium 32	119 Sn 50	207 Pb Lead 82		167 Er Erbium 68
	S			10.8 B 5	27.0 A1 Aluminium 13	69.7 Ga Gallium 31	115 In Indium 49	204 T1 Thallium 81		165 Ho 67	(254) Esterinium 99
LE					Î	65.4 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		163 Dy Dysprosium 66	Cf Cf Californium 98
HE PERIODIC TABLE						63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	f Block	159 Tb Terbium	(245) Bk Berkelium 97
DIC						58.7 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	f Bl	157 Gd Gadolinium 64	(247) Cm Curium 96
ERIO					-	58.9 Co Cobalt 27	103 Rh Rhodium 45	$\frac{192}{\mathbf{Ir}}$ Iridium		(153) Eu Europium 63	Am Americium 95
HE PI	roup		Key relative	atomic mass atomic number	Block	55.8 Fe Iron 26	101 Ruthenium 44	190 Os 76		150 Sm samarium 62	Plutonium 94
HL	Gr		×	A _r Symbol Name Z	d B	54.9 Mn Manganese 25	98.9 Tc Technetium 43	186 Re Rhenium 75		(147) Pm Promethium 61	(237) Np Neptunium 93
						52.0 Cr Chromium 24	95.9 MO Molybdenum 42	184 W Tungsten 74		144 Nd Neodymium 60	238 U Uranium 92
						50.9 V Vanadium 23	92.9 Nb Niobium 41	181 Ta Tantalum 73		141 Pr 59	(231) Pa Protactinium 91
						47.9 Tri Titanium 22	91.2 Zr Zirconium 40	179 Hf Hafnium 72		140 Ce 58	232 Th Thorium 90
						45.0 Sc Scandium 21	88.9 Y Yttrium 39	139 La La Lanthanum	Actinium 89	 Lanthanoid elements 	Actinoid elements
	7	ock		9.01 Be Beryllium	24.3 Mg Magnesium 12	40.1 Ca Calcium 20	87.6 Sr Strontium 38	137 Ba Barium 56	(226) Ra 88	 Lanthance elements 	 Actinoid elements
	1	od s Block	1.01 H Hydrogen 1	6.94 Li 1 3	23.0 Na Sodium	39.1 K Potassium 19	85.5 Rb Rubidium 37	133 Cs 55	(223) Fr 87		
		Period	1	2	С	(1092-01A) V	9	7		

3